Chem. Ber. 119, 2647-2655 (1986)

## Untersuchungen zur statistischen Synthese von Rotaxanen

Gottfried Schill<sup>\*</sup><sup>a</sup>, Wolfgang Beckmann<sup>a</sup>, Norbert Schweickert<sup>a</sup> und Hans Fritz<sup>b</sup>

Institut für Organische Chemie und Biochemie der Universität Freiburg<sup>a</sup>, Albertstr. 21, D-7800 Freiburg, und Ciba-Geigy AG<sup>b</sup>, CH-4002 Basel

Eingegangen am 17. März 1986

Die Rotaxane 6a-g und 9a-e werden nach der statistischen Methode synthetisiert. Die Ausbeuten, die von 0.35-6.8% bzw. 4.5-11.3% in Abhängigkeit von der Ringgröße bzw. Länge der Hantel ansteigen, wurden durch HPLC-Analyse bestimmt. Die Rotaxane 6f und 9a wurden isoliert. Die <sup>1</sup>H- und <sup>13</sup>C-NMR-Spektren dieser Verbindungen und ihrer mole-kularen Untereinheiten werden diskutiert.

## Studies on the Statistical Synthesis of Rotaxanes

The rotaxanes 6a-g and 9a-e are synthesized following statistical methods. The yields increasing from 0.35 to 6.8% and 4.5 to 11.3%, respectively, as a function of ring size and chain length of the dumpbell were determined by HPLC analysis. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of these compounds and their molecular subunits are discussed.

Wie Harrison gezeigt hat, lassen sich Rotaxane 3 nach der statistischen Methode aus einer langkettigen Verbindung mit sperrigen Endgruppen (Hantel) 1 und Makrocyclen 2 gemäß Gleichung (1) synthetisieren<sup>1,2</sup>.

 $R-O-\left(-[CH_2]_n\right)$  $R-0-[CH_2]_n-0-R + [cH_2]_m$ -0-R (1)1**a**: n = 13 2a: m = 14-42**3**a: m = 24-33, n = 13 **b**: **n** = 10 **b**: m = 29 **b**: **m** = 29. n = 10c: n = 10c: m = 27 c: m = 27. n = 10. **a**:  $R = C_6H_4 - tC_4H_9 - (4)$  **b**: R = Trityl **c**:  $R = CO-CH(C_6H_{11})_2$ 

Die Gleichgewichtseinstellung zwischen 1, 2 und 3 kann durch säurekatalysierte, reversible Abspaltung der sperrigen Endgruppen oder bei geeignetem Verhältnis zwischen Raumerfüllung der Sperrgruppen und Durchmesser der Makrocyclen thermisch erreicht werden. Im Falle von 1a wurden die Ausbeuten an Rotaxanen

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009-2940/86/0808-2647 \$ 02.50/0 3a in Abhängigkeit von der Ringgröße der Makrocyclen 2a bestimmt. Sie betrugen 0.0013% für den 24-gliedrigen Ring, stiegen mit zunehmender Ringgröße stark an und erreichten 0.72% für den 29- und 1.6% für den 33-gliedrigen Ring. Für m = 23 und kleinere Ringe konnten keine Rotaxane nachgewiesen werden, vermutlich da die Ausbeute unter der Nachweisgrenze lag; für m > 33 sind die Rotaxane wegen der Größe der Ringe nicht mehr stabil. Die Bildung der Rotaxane 3b und 3c mit 29- bzw. 27-gliedrigen Cycloalkanen konnte auch thermisch durch Erwärmen auf 120 bzw. 220°C erreicht werden.

Harrison synthetisierte die Rotaxane **3a** gemäß Gleichung (1) durch Erwärmen eines Gemisches aus zwei Gewichtsteilen **1a** und einem Gewichtsteil eines Cycloalkangemisches **2a**, das alle Cycloalkane von m = 14-42 enthielt. Da die Synthese nach Gleichung (1) eine bimolekulare Reaktion ist, ist die Gleichgewichtslage konzentrationsabhängig. Bei der Reaktion eines bestimmten Makrocyclus wirken die anderen noch vorhandenen Ringe als Verdünnungsmittel. Es war deshalb zu erwarten, daß wesentlich höhere Ausbeuten an Rotaxanen erhalten werden, wenn man die Reaktionen ohne Verdünnungsmittel, also in Gegenwart von Cycloalkanen einheitlicher Größe, durchführt.

Wir haben uns deshalb zwecks präparativer Nutzung von Rotaxansynthesen gemäß Gleichung (1) mit der Frage beschäftigt, welche maximalen Ausbeuten an Rotaxanen bei Durchführung der Reaktion in möglichst hoher Konzentration, also ohne Verdünnungsmittel, erzielbar sind. Hierzu haben wir gemäß Gleichung (2) die Hantel 4 mit den Cycloalkanen 5a-g im Molverhältnis 1:1 unter Zusatz katalytischer Mengen *p*-Toluolsulfonsäure zu den Rotaxanen 6a-g umgesetzt. Höhere Cycloalkane als 29-gliedrige Ringe haben wir nicht eingesetzt, da mit Tritylsperrgruppen die entstehenden Rotaxane nicht mehr stabil sind<sup>1</sup>). Nach 30 min Erwärmen auf 130°C war das Gleichgewicht erreicht.



Die Ausbeuten an Rotaxanen wurden anschließend durch Hochdruckflüssigkeitschromatographie bestimmt und sind in Abb. 1 aufgezeichnet. Sie sind erwartungsgemäß im Vergleich zu den Versuchen von *Harrison* wesentlich höher. Dadurch gewinnt die statistische Synthese von Rotaxanen auch für weitere präparative Arbeiten an Interesse<sup>3</sup>. Bemerkenswert ist, daß auch bei Verwendung des 21-gliedrigen Ringes **5a** noch das Rotaxan **6a** nachgewiesen werden konnte.

Wir haben die Hantel 4 zusammen mit den Cycloalkanen 5d-g auch ohne Säurezusatz 24 h auf 85-90 °C erwärmt und konnten hierbei als Folge homolytischer, reversibler Öffnung der Hantel die Rotaxane 6d-g nachweisen. Die Reaktionen verlaufen allerdings nur sehr langsam. Selbst nach einer Reaktionszeit von 24 h war die Gleichgewichtseinstellung noch nicht erreicht. Die Reaktionszeiten wurden jedoch nicht weiter verlängert, da zunehmend Zersetzungsreaktionen eintraten. Auch diese Ergebnisse sind in Abb. 1 eingetragen. Im Falle des 29-gliedrigen Cycloalkans 5g ist anzunehmen, daß aufgrund der Moleküldimensionen die Gleichgewichtseinstellung sowohl thermisch als auch durch homolytische reversible Öffnung der Hantel abläuft.



Abb. 1. Ausbeute an Rotaxanen 6 in Abhängigkeit von der Ringgröße n der Makrocyclen 5; (a) säurekatalysiert, (b) thermisch

Das Rotaxan 6f mit einem 28-gliedrigen Cycloalkan haben wir nach chromatographischer Trennung des Reaktionsgemisches isoliert. Die Verbindung zeigt nach Umkristallisieren aus Petrolether den Schmp. 82-83 °C (4: Schmp. 98-99.5 °C, Cyclooctacosan 5f: Schmp. 46.5-47 °C).

In Tab. 1 sind die <sup>1</sup>H-chemischen Verschiebungen des Rotaxans 6f und eines Gemisches der beiden Untereinheiten zusammengestellt. In analoger Weise, wie wir es für Catenane beobachtet haben<sup>4</sup>, werden infolge von van-der-Waals-Wechselwirkungen zwischen den Untereinheiten des Rotaxans Änderungen in der Lage der Signale des Rotaxans im Vergleich zu denen des Gemisches der Untereinheiten beobachtet. Die Signale der Protonen der Achse werden um 0.05 ppm erwartungsgemäß nach tieferem Feld verschoben, die des Makrocyclus dagegen um 0.04 ppm nach höherem Feld. Wir führen diese Verschiebung auf den Einfluß der Tritylsperrgruppen zurück. Die Protonen des Makrocyclus befinden sich in einem Gebiet verstärkter diamagnetischer Abschirmung senkrecht zur Ebene der aro-

matischen Kerne der Sperrgruppen. Dies führt zu einer Überkompensierung der Tieffeldverschiebung, wie sie aufgrund der van-der-Waals-Wechselwirkungen zu erwarten wäre.

Tab. 1. Chemische Verschiebungen (δ, ppm) der <sup>1</sup>H-NMR-Spektren des Rotaxans 6f und eines Gemisches der Untereinheiten 4 und 5f (250 MHz, CDCl<sub>3</sub>)



| Zuordnung                        | Signal-<br>struktur | Rotaxan   | Gemisch   | Δδ         |
|----------------------------------|---------------------|-----------|-----------|------------|
| Tritylgruppe                     | m                   | 7.42-7.15 | 7.30-7.08 | +0.12-0.07 |
| C-2                              | t, J = 7 Hz         | 2.12      | 2.06      | + 0.06     |
| C-3                              | m                   | 1.42      | 1.31      | +0.11      |
| C-4,5,6,7                        | m                   | 1.25      | 1.20      | +0.05      |
| [CH <sub>2</sub> ] <sub>28</sub> | m                   | 1.16      | 1.20      | -0.04      |

Tab. 2. Chemische Verschiebungen ( $\delta$ , ppm) der <sup>13</sup>C-NMR-Spektren des Rotaxans **6f** und eines Gemisches der Untereinheiten **4** und **5f** (Lösungsmittel CDCl<sub>3</sub>, 90.52 MHz, Temp. 34°C, Reproduzierbarkeit ±0.02 ppm)

| Zuordnung     | Rotaxan | Gemisch | Δδ     |
|---------------|---------|---------|--------|
| S             | 145.20  | 145.18  | +0.02  |
| m             | 129.64  | 129.66  | -0.02  |
| 0             | 127.77  | 127.79  | -0.02  |
| р             | 126.45  | 126.49  | -0.04  |
| C-1           | 66.36   | 66.43   | -0.07  |
| C-2           | 32.24   | 32.08   | +0.16  |
| 04567         | (29.92  | 29.51   | + 0.41 |
|               | 29.87   | 29.41   | +0.46  |
| C-4,5,0,7     | 29.78   | 29.19   | + 0.59 |
|               | 29.58   | 29.03   | + 0.55 |
| C-3           | 28.97   | 28.66   | + 0.31 |
| $[CH_2]_{28}$ | 29.63   | 29.12   | + 0.51 |

Signifikantere Unterschiede treten in den <sup>13</sup>C-NMR-Spektren des Rotaxans **6f** und des Gemisches seiner molekularen Untereinheiten auf (Tab. 2). Das Signal des Makrocyclus ist im Rotaxan um 0.51 ppm gegenüber dem entsprechenden Signal des Gemisches nach tieferem Feld verschoben. Während die Signale für die C-Atome der Tritylgruppen im Rotaxan nur sehr geringe Verschiebungen gegenüber den entsprechenden Signalen des Gemisches aufweisen, erfahren die Signale der Achsen-C-Atome im Rotaxan Tieffeldverschiebungen um 0.16–0.59 ppm. Mit wachsendem Abstand der Achsen-C-Atome von den Sperrgruppen nimmt die Tieffeldverschiebung der Signale zu. Daraus läßt sich der Schluß ziehen, daß die Wechselwirkungen zwischen dem Makrocyclus und den inneren Methylengruppen am stärksten sind.

In einer weiteren Versuchsreihe haben wir die Ausbeute an Rotaxanen 9a-ein Abhängigkeit von der Kettenlänge der Hanteln 7a-e bestimmt, indem wir sie gemäß Gleichung (3) durch thermische Äquilibrierung aus 7a-e und Cyclononacosan (5g) synthetisiert haben. Die Gleichgewichtseinstellung konnte durch Erwärmen auf 115 °C (24 h) erreicht werden. Die Ausbeuten wurden wiederum durch HPLC-Analyse bestimmt und sind in Abb. 2 aufgetragen. Erwartungsgemäß stei-



(3)

Tab. 3. Chemische Verschiebungen (δ, ppm) der <sup>13</sup>C-NMR-Spektren des Rotaxans 9a und eines Gemisches der Untereinheiten 7a und 5g (25.16 MHz, CDCl<sub>3</sub>, Temp. ±1°C, Konzentration 0.03 M, Reproduzierbarkeit ±0.02 ppm)



| Zuordnung                        | Rotaxan | Gemisch | Δδ    |
|----------------------------------|---------|---------|-------|
| S                                | 147.58  | 147.64  | -0.06 |
| m                                | 129.15  | 129.22  | -0.07 |
| 0                                | 127.73  | 127.72  | -0.01 |
| р                                | 125.67  | 125.69  | +0.01 |
| C-1                              | 56.42   | 56.53   | -0.11 |
| C-2                              | 40.53   | 40.41   | +0.12 |
|                                  | ( 31.03 | 30.45   | +0.58 |
| C-4,5,6                          | 30.37   | 29.64   | +0.73 |
|                                  | 30.03   | 29.49   | +0.54 |
| C-3                              | 26.09   | 25.68   | +0.41 |
| [CH <sub>2</sub> ] <sub>29</sub> | 29.46   | 29.28   | +0.18 |

Chem. Ber. 119 (1986)

gen die Ausbeuten mit der Kettenlänge der Hanteln stark an und erreichen bei der Hantel mit 38 Methylengruppen in der Achse den Wert von 11.3%.

Das Rotaxan 9a haben wir im präparativen Maßstab isoliert. Es fällt in kristallisierter Form an, doch ist eine Bestimmung des Schmelzpunktes nicht möglich, da hierbei thermische Dissoziation in die Untereinheiten eintritt.

Im <sup>1</sup>H-NMR-Spektrum ist das Signal für die Protonen des Makrocyclus im Vergleich zu dem Gemisch der Untereinheiten in ähnlischer Weise, wie für 6f diskutiert, um 0.08 ppm nach höherem Feld verschoben. Die Unterschiede in den Verschiebungen der übrigen Protonen zwischen Rotaxan und Gemisch seiner Untereinheiten sind gering.

Im <sup>13</sup>C-NMR-Spektrum (Tab. 3) ist im Rotaxan das Signal des Makrocyclus um 0.18 ppm im Vergleich zum Signal des Gemisches der Untereinheiten zu tieferem Feld verschoben. Die Signale der Tritylgruppen erfahren im Vergleich zum Gemisch der Untereinheiten nur eine sehr geringe Hochfeldverschiebung. Dagegen sind die Signale der Kohlenstoffatome der Achse wiederum um 0.12–0.73 ppm im Vergleich zu den entsprechenden Signalen des Gemisches der Untereinheiten nach tieferem Feld verschoben.



Abb. 2. Ausbeute an Rotaxanen 9 in Abhängigkeit von der Kettenlänge n der Hanteln 7

Für die Unterstützung der vorliegenden Untersuchungen danken wir der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie, Fonds der Chemie.

## **Experimenteller** Teil

<sup>1</sup>H-NMR-Spektren: Spektrometer HA 100-D der Varian Associates und WM-250 der Fa. Bruker. - <sup>13</sup>C-NMR-Spektren: XL-100/15 und HX-360 der Fa. Bruker. - Aluminiumoxid, Woelm, basisch, Aktivität II-III.

1,12-Bis(triphenylmethylthio)dodecan (4): Zu einer Lösung von 938 mg (4.00 mmol) 1,12-Dodecandithiol und 2.51 g (9.00 mmol) Chlortriphenylmethan in 125 ml absol. Dioxan werden 20 g Aluminiumoxid (Woelm W 200, basisch) gegeben. Man rührt unter Feuchtigkeitsausschluß 24 h, filtriert, wäscht den Rückstand mit Dioxan und dampft das Filtrat i. Vak. ein. Nach Umkristallisieren aus Isopropylalkohol erhält man 2.32 g (81%) farblose Kristalle mit Schmp. 97–98.5°C. Eine zur Analyse nochmals umkristallisierte Probe zeigte den Schmp. 98–99.5°C.

C<sub>50</sub>H<sub>54</sub>S<sub>2</sub> (719.1) Ber. C 83.51 H 7.57 S 8.92 Gef. C 83.70 H 7.72 S 8.78

Rotaxane 6a - g: Eine Mischung von 0.05 mg (ca. 0.003 mmol) wasserfreier *p*-Toluolsulfonsäure (hergestellt durch Abdampfen einer etwa 1proz. Lösung in Toluol), 7.2 mg (0.010 mmol) Hantel 4 und 0.010 mmol Cycloalkan 5 wird 30 min auf 130°C erwärmt. Man kühlt ab, versetzt mit 2 µl Triethylamin, löst in Tetrachlormethan und füllt nach Überführen der Lösung in ein Meßkölbchen auf 3 ml auf. Die Ausbeuten an Rotaxanen werden anschließend mit einem HPLC-Gerät der Fa. Knauer (Hochdruckpumpe Typ 5200; Rheodyne-Injektionssystem, Modell 7120, Spektralphotometer, Typ 8100, Wellenlänge 254 nm; Schichtdicke der Küvette 2 mm; analytische Trennsäule, Durchmesser 4 mm, selbstgepackte Säule mit "Lichrosorb SI 60", 5µ der Fa. Merck, Fördervolumen 1 ml/min; Druck 110 bar) bestimmt. Zuvor wurde eine Eichkurve für 4 aufgenommen. Auf diese Weise ließ sich die Standardabweichung bestimmen. Die Retentionszeiten für die Rotaxane 6a - g sind etwas kürzer als für 4.

Es wurden folgende Ausbeuten für die Rotaxane erhalten: (a) säurekatalysiert, 6a 0.35%; 6b 0.5%; 6c 0.75%; 6d 0.9%; 6e 1.2%; 6f 3.4%; 6g 6.8%; (b) thermisch, 6d 0.4%; 6e 0.6%; 6f 1.7%; 6g 6.8%.

[2]-[1,12-Bis(triphenylmethylthio)dodecan]-[Cyclooctacosan]-Rotaxan (6f): Eine Mischung von 1.8 g (2.5 mmol) Hantel 4, 2.0 g (5.0 mmol) Cyclooctacosan (5f) und eine Lösung von 8.6 mg (0.050 mmol) wasserfreier p-Toluolsulfonsäure in 8.6 ml Toluol wird unter Rühren auf 130 °C erwärmt. Über die Lösung leitet man einen Stickstoffstrom, wodurch das Toluol verdampft wird. Nach 30 min wird abgekühlt und mit 20 µl Triethylamin versetzt. Man versetzt den Rückstand mit 50 ml Petrolether, verreibt die Schmelze und filtriert. Der Rückstand wird noch dreimal mit 10 ml Petrolether digeriert und jeweils abfiltriert. Das so abgetrennte 4 (1.44 g, 60%) wird mit Benzol über eine kurze Aluminiumoxidsäule, basisch, filtriert und aus Isopropylalkohol umkristallisiert. Man erhält 1.3 g 4 zurück, das für weitere Ansätze verwendet werden kann. Die vereinigten Petrolether-Filtrate werden auf 30 ml eingeengt und mit Petrolether über eine Aluminiumoxidsäule ( $15 \times 2.5$  cm) filtriert. Man erhält 1.7 g (85%) 5f zurück. Anschließend wird die Säule mit Benzol eluiert, und man erhält ein Gemisch aus 4 und 6f sowie Artefakte. Das Gemisch wird anschließend an einer Aluminiumoxidsäule ( $35 \times 3$  cm) mit Petrolether/Benzol (3:1) chromatographiert. Man erhält 105 mg (3.8%) Rotaxan, das nach Umkristallisieren aus Petrolether bei 82-83°C schmilzt.

C<sub>78</sub>H<sub>110</sub>S<sub>2</sub> (1111.9) Ber. C 84.26 H 9.97 S 5.77 Gef. C 84.51 H 9.95 S 5.82

1,1,1,1,2,12,12-Hexaphenyldodecan (7a): Zu einer Lösung von 4.8 g (20 mmol) Triphenylmethan in 16 ml absol. Ether und 40 ml absol. Tetrahydrofuran werden bei 0°C unter Stickstoff und Rühren 20 mmol Butyllithium-Lösung (2 m in Hexan) getropft. Man rührt 1 h bei 0°C, 1 h bei Raumtemp., tropft bei -20°C eine Lösung von 1.5 g (5.0 mmol) 1,10-

Dibromdecan in 15 ml absol. Tetrahydrofuran zu, rührt 8 h bei Raumtemp., versetzt mit Methanol und Wasser und ethert aus. Der nach Eindampfen erhaltene Rückstand wird an einer Kieselgelsäule  $(30 \times 3.5 \text{ cm})$  mit Petrolether/Benzol (4:1) chromatographiert und anschließend aus Petrolether (90–100°C) umkristallisiert. Man erhält 2.65 g (84%) farblose Kristalle mit Schmp. 119–124°C. Eine nochmals umkristallisierte Probe schmilzt bei 126.5–127°C.

C48H50 (626.9) Ber. C 91.96 H 8.04 Gef. C 92.06 H 8.22

1,1,1,14,14,14-Hexaphenyltetradecan (7b): Analog zu 7a werden 480 mg (2.00 mmol) Triphenylmethan mit 211 mg (0.50 mmol) 1,12-Diioddodecan umgesetzt. Man erhält nach Umkristallisieren aus Eisessig 250 mg (76%) farblose Kristalle mit Schmp. 124-125°C.

C<sub>50</sub>H<sub>54</sub> (654.9) Ber. C 91.69 H 8.31 Gef. C 91.49 H 8.80

1,1,1,18,18,18-Hexaphenyloctadecan (7c): Wie für 7a beschrieben werden 960 mg (4.00 mmol) Triphenylmethan mit 384 mg (1.00 mmol) 1,16-Dibromhexadecan in Tetrahydrofuran umgesetzt. Nach Chromatographieren des Rückstands an Aluminiumoxid mit Petrolether erhält man 270 mg 7c als zähes Öl, das im DC noch geringe Verunreinigungen zeigte.

1,1,1,22,22-Hexaphenyldocosan (7d): Wie für 7a beschrieben werden 1.44 g (6.0 mmol) Triphenylmethan mit 220 mg (0.50 mmol) 1,20-Dibromeicosan umgesetzt. Nach Chromatographieren des Rückstands an Aluminiumoxid (basisch, Aktivität II-III) mit Petrolether werden 310 mg (81%) 7d als hochviscoses Öl erhalten.

C<sub>58</sub>H<sub>70</sub> (767.2) Ber. C 90.80 H 9.20 Gef. C 90.71 H 9.08

1,1,1,40,40,40-Hexaphenyltetracontan (7e): Wie bei 7a werden 1.44 g (6.0 mmol) Triphenylmethan in 15 ml absol. Ether und 10 ml absol. Tetrahydrofuran mit 346 mg (0.50 mmol) 1,38-Dibromoctatriacontan<sup>5)</sup> in 80 ml absol. Tetrahydrofuran umgesetzt. Anschließend werden 10 ml absol. Hexamethylphosphorsäuretriamid zugegeben, und 15 h wird bei Raumtemp. gerührt. Man versetzt mit Wasser und nimmt in Chloroform auf. Der Rückstand wird an Aluminiumoxid (3 × 2.5 cm) mit Petrolether chromatographiert. Nach Umkristallisieren aus Petrolether und anschließend aus Essigsäure-ethylester werden 350 mg (49%) Kristalle mit Schmp. 85-87.5°C erhalten. Eine nochmals umkristallisierte Probe zeigt den Schmp. 87-88°C.  $C_{76}H_{106}$  (1019.7) Ber. C 89.52 H 10.48 Gef. C 89.23 H 10.20

Rotaxane 9a-e: Eine Mischung von 41 mg (0.10 mmol) Cyclononacosan (5g) und 0.10 mmol Hantel 7a-e wird unter Rühren 24 h auf 115-120 °C erwärmt. Die Ausbeute an Rotaxanen 9a-e wird anschließend, wie für 6a-g beschrieben, unter Verwendung einer "Knauer Fertigsäule-LiChrosorb SI 60" bestimmt: 9a 4.5%; 9b 4.4%; 6.6%; 9c 7.6%; 9d 8.8%; 9e 11.3%.

[2]-[1,1,1,2,12,12-Hexaphenyldodecan]-[Cyclononacosan]-Rotaxan (9a): Eine Mischung von 407 mg (1.0 mmol) Cyclononacosan und 627 mg (1.0 mmol) 7a wird 2 h auf 125 - 130 °C erwärmt. Der Rückstand wird in Petrolether gelöst und über eine kurze Säule mit Aluminiumoxid filtriert. Im Eluat befindet sich das überschüssige Cyclononacosan. Die Säule wird anschließend mit Ether eluiert. Der nach Eindampfen erhaltene Rückstand wird mehrmals mit kaltem Petrolether digeriert und jweweils abfiltriert. Es bleibt das überschüssige 7a zurück. Die Petroletherauszüge werden eingedampft, und der Rückstand wird durch präparative Schichtchromatographie an Aluminiumoxid mit Petrolether/Benzol (10:1) gereinigt. Man erhält 24.2 mg 9a als Öl, das beim Stehenlassen erstarrt.

C<sub>77</sub>H<sub>108</sub> (1033.9) Ber. C 89.45 H 10.53 Gef. C 89.40 H 10.48

## CAS-Registry-Nummern

4:  $102435-91-6 / 6a: 102435-92-7 / 6b: 102435-93-8 / 6c: 102435-94-9 / 6d: 102435-95-0 / 6e: 102435-96-1 / 6f: 102435-97-2 / 6g: 102492-30-8 / 7a: 40315-28-4 / 7b: 102435-98-3 / 7c: 102435-99-4 / 7d: 102436-00-0 / 7e: 102436-06-6 / 9a: 102436-02-2 / 9b: 102436-03-3 / 9c: 102436-04-4 / 9d: 102436-05-5 / 9e: 102436-07-7 / Ph_3CH: 519-73-3 / Ph_3CCI: 76-83-5 / HS(CH_2)_{12}SH: 33528-63-1 / Br(CH_2)_{10}Br: 4101-68-2 / I(CH_2)_{12}I: 24772-65-4 / Br(CH_2)_{16}Br: 45223-18-5 / Br(CH_2)_{20}Br: 14296-16-3 / Br(CH_2)_{28}Br: 102436-01-1$ 

- <sup>2)</sup> I. T. Harrison, J. Chem. Soc., Perkin Trans. 1 1974, 301.
- <sup>3)</sup> G. Schill, N. Schweickert, H. Fritz und W. Vetter, Angew. Chem. **95**, 909 (1983); Angew. Chem., Int. Ed. Engl. **22**, 889 (1983).
- <sup>4)</sup> H. Fritz, E. Logemann, G. Schill und T. Winkler, Chem. Ber. 109, 1258 (1976).
- <sup>5)</sup> G. Schill und C. Merkel, Chem. Ber. 111, 1028 (1978).

[57/86]

<sup>&</sup>lt;sup>1)</sup> I. T. Harrison, J. Chem. Soc., Chem. Commun. 1972, 231.